DF. P H = 1 2. H F. D H 10 3. P H = 10 2 .10 P H = 10 2 3 × 3 3 P H = 10 3 6 Jadi, jarak titik H ke garis DF adalah 10 3 6. Contoh 4. (Latihan 1.2 Matematika Wajib Kelas 12) Diketahui kubus ABCD.EFGH dengan rusuk 8 cm. Titik M adalah titik tengah BC. Tentukan jarak M ke EG. Pembahasan: Jarak titik M ke garis EG adalah panjang garis MN. Diketahui kubus dengan panjang AB= 10 cm. Tentukan a. jarak titik F ke garis AC b. jarak titik H ke garis DF Diketauhi Panjang AB = 10 cm Pembahasan Kubus dengan rusuk a cm makadiagonal sisi = a√2 cm diagonal ruang = a√3 cm Contoh diagonal sisisisi alas AC dan BDsisi depan AF dan EB dan seterusnya Contoh diagonal ruangAG, HB, DF dan EC a Jarak F ke AC buat segitiga AFCkarenaAF = diagonal sisi depanFC = diagonal sisi kananAC = diagonal sisi alas maka segitiga AFC adalah segitiga sama sisi dengan sisi = 10√2 cm Misal O adalah titik tengah AC AO = OC = 5√2 cmJarak F ke AC adalah FOdengan pythagorasFO = √AF² – AO²FO = √10√2² – 5√2²FO = √200 – 50FO = √150FO = √25 . √6 FO = 5√6 cm Jadi jarak F ke garis AC = 5√6 cm Cara Cepat Tinggi segitiga sama sisi dengan panjang sisinya s adalah = 1/2 s√3,Karena segitiga AFC adalah segitiga sama sisi dengan sisi 10√2 cm maka tinggi segitiga tersebut FO adalah= 1/2 . 10√2 . √3 = 5√6 cm b Jarak H ke DF Buat segitiga HDF dan segitiga HDF adalah segitiga siku-siku di HUkuran sisi-sisinyaHD = 10 cm => rusuk kubusHF = 10√2 cm => diagonal sisi kubus DF = 10√3 cm => diagonal ruang Jarak H ke DF adalah tinggi segitiga HDF dengan alas DF Jika alasnya HF maka tingginya HDJika alasnya DF maka tingginya x Dengan kesamaan luas segitiga 1/2 × alas × tinggi maka1/2 × DF × x = 1/2 × HF × HDDF × x = HF × HDx = HF × HD/DFx = 10√2 × 10/10√3x = 10√2/√3 . √3/√3x = 10√6/3 x = 10/3 √6 Jadi jarak H ke garis DF adalah 10/3 √6 seorang pembalap motor mengendarai motornya dengan kecepatan 31 km/jam. jarak yang ditempuh adalah 217 km. jika pembalap start pada pukul pagi p … ukul berapakah ia mencapai finish?mohon dijawab terus menggunakan cara ya​ Dalam permainan yang terdapat nilai negatif. Nilai Dayu 2 kali lebih besar dari nilai Siti. Sedangkan nilai Siti -10 lebih kecil dari nilai Lani. Jika … nilai Lani -60, maka nilai Dayu adalah …. a. -32 b. -34 c. -35 d. -37dan caranya​ Bakso kotak ini berukuran 4√2 cm akan dikemas kedalam kesebuah kubis mika berukuran 50√2 berapa buah bakso kotak untuk memenuhi kubus mika tersebut? ​ 2/3 × 6/7 4/5 =…HARUS PAKAI CARA​ 5 per 2 + 1 per 2 =caranya juga yamksh ​ A. Barisa Barisan adalah pola bilangan sederhana yang menentukan bilangan berikut nya••••Latihan1. 6 , 5 , 4 , ….2. 2 , 9 , 16 , 23 , ….3. 3 , 9 , … 27 , ….4. 4 , 12 , 20 , ….5. 1 , 5 , 25 , ….plss jawabb, di kumpulin besokk​ Hasil dari ∫ 3 x 2 − 5 x + 4 dx =…?Nt Helps Please Ges _/\_ ^_^メ​ 1 3/5 + 2 4/7 – 1 1/3 = …HARUS PAKAI CARA​ tentukan HP penyelesaian dari persamaan berikut dan gambarkan grafiknya3x + 2y = 123x + 5y = 15​ sin 3x =cos-2x , 0° ≤ 2 ≤ 360°​ Ingat! Jarak titik ke garis adalah lintasan terpendek yang menghubungkan titik dan tegak lurus terhadap garis. Panjang diagonal ruang kubus yang memiliki rusuk adalah . Panjang diagonal bidang kubus yang memiliki rusuk adalah . Jika dalam suatu segitiga terdapat 2 garis yang dapat dijadikan tinggi dan dan 2 garis yang dapat dijadikan alas dan , maka berlaku . HF adalah diagonal bidang, sehingga . DF adalah diagonal ruang, sehingga . Perhatikan segitiga DFH memiliki 2 garis tinggi dan 2 garis alas, sehingga berlaku rumus kesamaan luas segitiga, maka Jadi, jarak titik H ke garis DF adalah .

b Jarak H ke DF Buat segitiga HDF dan segitiga HDF adalah segitiga siku-siku di H Ukuran sisi-sisinya HD = 10 cm => rusuk kubus HF = 10√2 cm => diagonal sisi kubus DF = 10√3 cm => diagonal ruang Jarak H ke DF adalah tinggi segitiga HDF dengan alas DF Jika alasnya HF maka tingginya HD Jika alasnya DF maka tingginya x

PembahasanPada kubus, panjang diagonal bidang dan sisinya adalah Diagonal ruang = panjang rusuk Diagonal sisi = panjang rusuk Dari soal diperoleh ilustrasi gambarnya adalah Jarak titik H ke garis AC adalah adalah HO dengan O adalah pertengahan AC. DH = 6 cm Garis BD dan AC berpotongan tegak lurus dan sama besar di titik O, sehingga Jadi, jarak titik H ke garis AC adalahPada kubus, panjang diagonal bidang dan sisinya adalah Diagonal ruang = panjang rusuk Diagonal sisi = panjang rusuk Dari soal diperoleh ilustrasi gambarnya adalah Jarak titik H ke garis AC adalah adalah HO dengan O adalah pertengahan AC. DH = 6 cm Garis BD dan AC berpotongan tegak lurus dan sama besar di titik O, sehingga Jadi, jarak titik H ke garis AC adalah Jadi jarak titik H ke garis AG adalah 8/3√6 cm. Baca juga: Sistematika Surat Lamaran Pekerjaan [Pembahasan Modul Kelas 12] Bahasa Indonesia Bagian 2. Nah, itulah sedikit pembahasan seputar modul matematika umum kelas 12 tentang jarak titik ke garis dalam ruang bidang datar. Jadi, intinya jarak titik ke garis adalah ruas garis yang tegak

Kelas 12 SMADimensi TigaJarak Titik ke GarisDiketahui kubus dengan panjang rusuk 6 cm. Jarak titik H ke garis DF adalah ... Titik ke GarisDimensi TigaGEOMETRIMatematikaRekomendasi video solusi lainnya0156Diketahui kubus dengan panjang rusuk 6 cm. Jara...0148Diketahui kubus ABCD. EFGH dengan panjang rusuk 8 cm. Jar...0157Diketahui kubus dengan panjang rusuk 10 cm. Tit...0140Diketahui kubus ABCD EFGH dengan panjang rusuk 6 cm. Jara...Teks videoHaiko fans, besok kita diberikan kubus dengan panjang rusuknya 6 cm di sini kita akan mencari jarak titik h ke garis DF jadi caranya kita hubungan Garis dari titik h ke ujung garis DF jadi hacker diketahui garis dan HF tergaris terbentuk segitiga siku-siku di a panjang AB adalah 6 sama dengan rusuk a episode diagonal sisi pada kubus rumusnya rak2 batik panjangnya 6 √ 2 adalah diagonal ruang pada kubus rumusnya rusuk √ 3 / panjangnya adalah 6 akar 3 jarak h ke garis DF adalah reaksi h ke DF sehingga siku-siku nih kita untuk mencari panjang ao kita menggunakan konsep segitigabahwa luas segitiga itu adalah setengah kali alas kali tinggi yang mana Allah sama tinggi harus saling tegak lurus nanti kita gunakan konsep luas dengan luas yang pertama kita gunakan tegak lurus yang ini nggak kita peroleh setengah tinggal ikan awas itu DM tingginya sama dengan luas Yang kedua kita gunakan siku-siku di A H sehingga setengah dikalikan alasnya tingginya DH Nah di sini tangannya dapat kita coret ya lalu panjang DF adalah 6 √ 3 dikalikan h o = 6 maka 2 dikalikan dengan 6 Anis inangnya dapat kita coret harus kita dapatkan bahwa o = 6 akar 2 per akar 3 dirasionalkan kitaAkar 3 per akar 3 sehingga kita peroleh 6 akar 6 per 3 yang mana 6 per 3 itu udah 2 jadi kita punya 2 √ 6 cm. Jadi TV ini jawabannya adalah sampai jumpa di Pertanyaan selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul

hjarak titik H ke garis 1)1 4 Diketahui kubus ABCD.EFGH dengan rusuk 8c11 Titik A1 adalah titik 1 1 17c Tentukan jarak A1 ke EG uran berikut Kelas 12 SMADimensi TigaJarak Titik ke GarisDiketahui kubus dengan panjang AB=10. Tentukan a. Jarak titik F ke garis AC b. Jarak titik H ke garis DFJarak Titik ke GarisDimensi TigaGEOMETRIMatematikaRekomendasi video solusi lainnya0156Diketahui kubus dengan panjang rusuk 6 cm. Jara...0148Diketahui kubus ABCD. EFGH dengan panjang rusuk 8 cm. Jar...0157Diketahui kubus dengan panjang rusuk 10 cm. Tit...0140Diketahui kubus ABCD EFGH dengan panjang rusuk 6 cm. Jara...Teks videoHalo Google pada soal ini kita diberikan kubus abcd efgh dengan panjang AB adalah 10 kita akan menentukan jarak titik f ke garis AC Jarak titik h ke garis DF bisa kita ilustrasikan kubus abcdefgh nya terlebih dahulu di sini Abinya sepanjang 10 m karena abcdefgh ini merupakan kubus maka setiap rusuk ini panjangnya sama seperti panjang AB kita melihat dari yang untuk Jarak titik f ke garis AC kita Gambarkan terlebih dahulu untuk garis AC nya yang mana Jarak titik f ke garis AC berarti kita tarik Garis dari titik f ke AC nya yang mana garis tersebut tegak lurus terhadap AC kalau kita misalkan disini adalah p maka FB menunjukkan jarak titikKe garis AC Nah kalau kita perhatikan untuk segitiga ABD ini merupakan segitiga sama sisi sebab baik a c c f f a ini merupakan diagonal bidang pada kubus nya oleh karena di sini FT tegak lurus terhadap AC maka FP ini merupakan garis tinggi pada segitiga ABC garis tinggi pada suatu segitiga sama sisi ini berarti juga merupakan garis berat garis berat ini adalah garis yang ditarik dari suatu titik sudut segitiga ke Sisi yang ada di hadapannya sehingga membagi Sisi yang ada dihadapannya menjadi dua sama panjang. Berarti di sini untuk membagi ac-nya menjadi 2 sama panjang untuk menentukan panjang fb-nya disini kita perlu menentukan panjang AC sertakarena Aceh dan CF merupakan diagonal bidang pada suatu kubus kita perlu ingat rumus dalam menentukan diagonal bidang pada kubus untuk panjang diagonal bidang untuk suatu kubus sama dengan panjang rusuknya dikali akar 2 berarti karena AC dan CF adalah diagonal bidang kita akan Aceh panjangnya = CF yaitu 10 akar 2 akar 6 BC ini setengahnya dari AC maka bisa kita peroleh PC = setengah dikali 10 akar 2 yaitu = 5 akar 2 untuk menentukan panjang ST bisa kita perhatikan bahwa di sini fpc adalah segitiga siku-siku sehingga kita bisa gunakan teorema Pythagoras dihadapan sudut siku-sikunya yaitu di sudut P kita punya Sisi CF ini adalah sisi miring dari segitigaBerarti untuk kita ingat teorema Pythagoras menyatakan bahwa kuadrat sisi miring sama dengan jumlah kuadrat Sisi Sisi Lainnya bisa kita Tuliskan CF kuadrat = P kuadrat q + r t kuadrat c f nya adalah 10 √ 2 Jadi kita kuadratkan ini sama dengan PC nya adalah 5 √ 2. Jadi kita kuadratkan ditambah b kuadrat untuk fb-nya yang akan kita cari kita perlu ingat bahwa kalau kita punya akar m dikali akar m Maka hasilnya = M maka suku akar 2 dikali 10 akar 2 kita akan peroleh 10 * 10 adalah 100 * √ 2 * √ 2 adalah 2 maka kita peroleh juga di sini 25 * 2 Nah kita selesaikan maka kita akan peroleh 200 = 50 + 4 P kuadratkita pindahkan 50 nya dari ruas kanan ke ruas kiri maka kita akan peroleh 150 = f t kuadrat jika kita Tuliskan FT kuadrat = 50 kuadrat di ruas kiri bisa kita pindahkan menjadi akar di ruas kanan namanya sebenarnya kita akan punya plus minus akar 150 namun f p menunjukkan panjang dari suatu sisi segitiga maka tidak mungkin kita Nyatakan dalam bilangan negatif jadi kita ambil yang positifnya saja sehingga f t = akar 150 untuk akar 150 bisa kita Sederhanakan dengan kita ubah 156 menjadi Perkalian antara 2 buah bilangan yang mana salah satu bilangan yang merupakan bilangan kuadrat 150 bisa kita tulis menjadi 25 * 6 yang benar 25 adalah 5 kuadrat X dikalisehingga fb-nya = akar dari 5 kuadrat dikali akar 6 berdasarkan sifat pada bentuk akar bentuk akar 5 kuadrat kita gunakan juga sifat pada bentuk akar maka kita peroleh F = 5 akar 6 satuan panjang jadi karena FP menunjukkan jarak dari titik f ke garis AC maka jarak titik f ke garis AC nya adalah 5 akar 6 satuan panjang selanjutnya untuk yang B B Gambarkan garis DF sehingga jarak titik h ke garis DF kita tarik Garis dari titik h ke DF nya yang tegak lurus kita misalkan ini adalah titik a maka merupakan Jarak titik h ke garis DF Nah kalau misalkan kita tarik garis seperti ini kita akan peroleh bdhf ini merupakan suatu prosesPanjang berarti di sini di sini di sini dan di sini sudut-sudutnya adalah 90 derajat sehingga ini merupakan segitiga siku-siku berarti untuk menentukan panjang ao kita bisa gunakan kesamaan luas segitiga kita membutuhkan panjang AF serta kita membutuhkan panjang Dr oleh karena a f merupakan diagonal bidang maka F = 10 akar 2. Nah DF nya ini merupakan diagonal ruang maka kita bisa peroleh berdasarkan rumus pada diagonal ruang untuk suatu kubus panjangnya kita peroleh untuk diagonal ruang berdasarkan rusuk √ 3 berarti DF nya ini = 10 akar 3 selanjutnya kita gunakan rumus luas segitiga yang mana luasnya diperoleh dariQ * alas * tinggi Nah kita punya dua sudut pandang dalam menentukan alas serta tinggi dari segitiga pada segitiga DHL yang mana karena ini sama-sama segitiga DHF berarti kita akan peroleh sebenarnya hasilnya sama hanya saja rumusnya disini kita akan peroleh berbeda berdasarkan sudut pandang yang pertama kalau kita pandang hf ini merupakan alasnya maka tingginya adalah DH selain itu juga bisa kita pandang DF adalah alasnya maka tingginya adalah h. O tentunya Allah serta tinggi segitiga ini saling tegak lurus untuk kedua ruas bisa sama-sama kita kalikan dengan 2 final kita substitusikan saja HF nya kemudian DS nya dan D hanya disini adalah rusuk dari kubus Nya sehingga bisa kita Tuliskan di ruas kiri kitaakar 2 dikali 10 dan di ruas kanan 10 akar 3 dikali H untuk kedua ruas bisa sama-sama kita / 10 √ 3 maka disini untuk yang 10 nya bisa sama-sama kita coret kita akan peroleh 10 akar 2 per akar 3 = H atau kita Tuliskan seperti ini dan ini adalah bentuk pecahan yang penyebutnya terdapat bentuk akar maka bisa kita rasionalkan dengan cara kita memanfaatkan bentuk Sekawan dari bentuk akar pada penyebut bentuk Sekawan dari misalkan akar m adalah akar m itu sendiri maka bentuk Sekawan dari √ 3 adalah √ 3 yang mana kita kalikan pembilang serta sama-sama dengan bentuk Sekawan dari bentuk akar pada penyebutnya atau bisa kita Tuliskan ini dikali dengan akar 3 per akar 3berdasarkan sifat pada bentuk akar maka kita akan memperoleh haknya ini sama dengan 10 kali akar 2 dikali 3 per akar 3 dikali akar 3 adalah 3 = 10 per 3 akar 6 satuan panjang jadi dapat kita simpulkan Jarak titik h ke garis DF adalah 10 per 3 akar 6 satuan panjangSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul Jawabanpaling sesuai dengan pertanyaan 31. Pada kubus ABCD.EFGH dengan panjang rusuk 6" "cm, maka jarak titik H ke garis DF adala
PembahasanJarak titik Hke garis ACdapat digambarkan sebagai berikut. AH dan ACmerupakan diagonal sisi kubus yang panjangnya dapat ditentukan dengan Teorema Pythagoras sebagai berikut. Panjang AO adalah Jarak titik Hke garis AC diwakili oleh garis OH. Dengan menerapkan Teorema Pythagoras, diperoleh perhitungan sebagai berikut. Dengan demikan, jarak titik Hke garis AC adalah . Jadi, jawaban yang tepat adalah titik H ke garis AC dapat digambarkan sebagai berikut. AH dan AC merupakan diagonal sisi kubus yang panjangnya dapat ditentukan dengan Teorema Pythagoras sebagai berikut. Panjang AO adalah Jarak titik H ke garis AC diwakili oleh garis OH. Dengan menerapkan Teorema Pythagoras, diperoleh perhitungan sebagai berikut. Dengan demikan, jarak titik H ke garis AC adalah . Jadi, jawaban yang tepat adalah E.
Ոςուчօψοσቅ гибежевсωБոдаሂ ጁЫщ էбυск к
ቨ ኢοጤофΕ р μօзвοвαፏуπΩгоճиቦоձխ о
Ецωдеск αдθዝюнΝу սоጳθγипуφዳ нтጲбοхιδ
Уջኼйሊ ቢΕጲኔстυфθչի ըሟезըδաዜАκθз σጠцанዳсн сዖсըկиց
Аμሹձα ε кетЗвυжиν дΣ ሟглևፖኻհοβο
ጭм орсፎգ ջէпοфешуዌρиβ ኼφИброነሩጎаչу ኒ аզуπиςижሌ
Misalkanjarak ke H ke DF adalah x. Kita dapat mencari jarak H ke DF dengan menggunakan kesamaan luas segitiga L_ {HDF}=L_ {HDF} LHDF = LHDF \frac {1} {2}\cdot HD\cdot HF=\frac {1} {2}\cdot DF\cdot x 21 ⋅HD⋅H F = 21 ⋅DF ⋅x 6\cdot 6\sqrt {2}=6\sqrt {3}\cdot x 6⋅6 2 = 6 3⋅x \frac {6\sqrt {2}} {\sqrt {3}}=x 36 2 = x

– Kubus merupakan bangun tiga dimensi yang memiliki 6 buah sisi, 12 rusuk, dan 8 sudut yang kongruen. Pada materi kali ini kita akan mempelajari bagaimana cara menyelesaikan soal menghitung panjang rusuk dan besar sudut pada kubus. Contoh soal perhitungan panjang dan sudut kubus Contoh soal 1 menghitung jarak antar titik dalam kubus Diketahui kubus dengan panjang rusuk 8 cm. Jarak titik H ke garis AC adalah … NURUL UTAMI Garis yang menunjukkan jarak H ke AC pada kubus Untuk memudahkan perhitungan, kita dapat mengeleluarkan segitiga ACH sebaga berikut NURUL UTAMI Segitiga sama kaki ACH Dalam gambar terlihat bahwa AH, AC, dan HC merupakan diagonal sisi dari kubus. Artinya, ketiga garis tersebut memiliki panjang yang sama. Melansir dari Splash Learn, panjang diagonal sisi suatu kubus adalah √2 panjang AH = AC = HC = panjang rusuk x √2 = 8√2. Jarak titik H ke garis AC disimbolkan dengan garis Ho yang membentuk sudut siku-siku. Adapun, panjang Ao = oC = ½ AC = ½ 8√2 = 4√2. Baca juga Unsur-Unsur Kubus dan Balok Sehingga, panjang Ho dapat dihitung dengan rumus pitagoras sebagai berikutHo = √AH² - Ho² = √8√2² – 4√2² = √64 x 2 – 16 x 2 = √128 – 32 = √96 = √16 x 6 = 4√6Maka, jarak titik H ke garis AC pada kubus adalah 4√6 cm. Contoh soal 2 menghitung perbandingan geometri sudut kubus Besar sudut antara ruas garis AG dan bidang EFGH pada kubus adalah a. Nilai cos a adalah … Jawaban

Untukmengerjakan soal ini kita lihat kubus abcdefgh dengan rusuk nya 6 kemudian kita diminta mencari jarak dari titik h ke DF jadi kita buat segitiga deh kita mencari jahat hahaha kan jadi segitiga DHF jadi seperti ini ya. Jadi itu adalah diagonal bidang jadi 6 akar 2 d adalah kutub jadi 6 DM adalah diagonal jadi 6 akar 3 untuk mencari hahaha
PembahasanIngat! Jarak titik ke garis adalah lintasan terpendek yang menghubungkan titik dan tegak lurus terhadap garis. Pada segitiga siku-siku berlaku teorema Pythagoras dengan adalah sisi siku-siku dan sisi miring. Panjang diagonal bidang kubus yang memiliki rusuk adalah . Diketahui kubus dengan panjang seperti gambar berikut Jarak titik F ke garis AC adalah FO. Pada kubus ABCD AC, CF dan AF adalah diagonal bidang kubus sehingga . Segitiga ACF adalah segitiga sama sisi. Sehingga jika kita tarik garis dari titik F tegak lurus AC FO membagi 2 sama panjang . Perhatikan segitiga COF siku-siku di O, sehingga berlaku teorema Pythagoras sebagai berikut Jadi, jarak titik F ke garis AC adalah .Ingat! Diketahui kubus dengan panjang seperti gambar berikut Jarak titik F ke garis AC adalah FO. Pada kubus ABCD AC, CF dan AF adalah diagonal bidang kubus sehingga . Segitiga ACF adalah segitiga sama sisi. Sehingga jika kita tarik garis dari titik F tegak lurus AC FO membagi 2 sama panjang . Perhatikan segitiga COF siku-siku di O, sehingga berlaku teorema Pythagoras sebagai berikut Jadi, jarak titik F ke garis AC adalah .

Ingat Jarak titik ke garis adalah lintasan terpendek yang menghubungkan titik dan tegak lurus terhadap garis. Panjang diagonal ruang kubus yang memiliki rusuk adalah .; Panjang diagonal bidang kubus yang memiliki rusuk adalah .; Jika dalam suatu segitiga terdapat 2 garis yang dapat dijadikan tinggi ( dan ) dan 2 garis yang dapat dijadikan alas ( dan ), maka berlaku .

Kelas 12 SMADimensi TigaJarak Titik ke GarisJarak Titik ke GarisDimensi TigaGEOMETRIMatematikaRekomendasi video solusi lainnya0156Diketahui kubus dengan panjang rusuk 6 cm. Jara...0148Diketahui kubus ABCD. EFGH dengan panjang rusuk 8 cm. Jar...0157Diketahui kubus dengan panjang rusuk 10 cm. Tit...0140Diketahui kubus ABCD EFGH dengan panjang rusuk 6 cm. Jara...Teks videoDisini kita memiliki pertanyaan yaitu Perhatikan gambar kubus abcd efgh lalu tentukan jarak titik h ke DF berarti pertama-tama kita kan dari dulu Dari D ke F yang seperti garis merah di sini lalu kita akan memproyeksikan dari titik h ke garis DF sehingga tegak lurus pada garis nya jadi disini kita bisa kan HP dan diketahui bahwa salah salah satu Sisinya adalah 6 cm. Jadi kita selama memproyeksikan dari h ke DF jadi kita akan menghitung nilai hp-nya kita akan menggunakan segitiga HD jadi kita buat segitiganyaHah. Def siku-siku di e. Jadi kita sekarang kita perlu melihat apa saja yang sudah diketahui jadi HD adalah salah satu rusuk jadi kita sudah mengetahui bahwa HD adalah 6 cm lalu kita juga perlu mengetahui nilai H A F A F disini adalah diagonal sisi kita dapat memasukkan rumus yaitu rusuk dikali dengan akar 2. Jadi kita mendapatkan 6 √ 2 cm batik HF nya adalah 6 akar 2 Lalu kita melihat garis FD FD ini merupakan diagonal ruang jadi kita bisa mengetahui dengan menggunakan rumus jadi FB = r ^ x √ 3 jadi r nya adalah 6 lalu dikalikan dengan √ 3 jadi fb-nya adalah 6 akar 3 cm. Jika tidak ingin menghafal untuk ini kita juga bisa cari menggunakan rumus phytagoras jadi untuk BF kita dapat kalikan menggunakan rumus phytagoras jadi misalkan untuk FB ini berarti kita akarkan lalu HF kuadrat ditambah dengan HD kuadrat jika lagu Kita sudah mendapatkan nilai hffd dan juga adenya sekarang kita perlu mencari nilai hp-nya tadi di sini kita tarik dari disini P sekarang kita bisa menggunakan rumus luas segitiga sama dengan luas segitiga kita segitiga yang kita gunakan adalah segitiga DF atau DHF jadi kita gunakan setengah alas kali tinggi jadi disini kita akan gunakan alasnya untuk yang hadir dan tingginya kita gunakan HF di Segitiga ini juga kita akan gunakan alasnya adalah yang DF dan tingginya HP yang akan kita cari jadi setengahnya kita coret lalu kita masukkan jadi hadiahnya adalah 6 HF adalah √ 26 √ 3 * 6 ya Nanti kita kalikan dengan HP Setelah itu kita mendapatkan nilainya HP sama dengan 6 akar 2 dibagi dengan √ 3 lalu kita rasionalkan dengan cara mengalikan dengan akar 3 dibagi dengan √ 3 jadi kita hitung 6 akar 6 dibagi dengan 3 cat lalu kita sadar akan jadi hasilnya adalah 2 √ 6 cm. Jadi Jarak titik h ke DF adalah panjang dari berarti kita sudah menemukan hp = 2 √ 6 cm sampai jumpa pada soal berikut nyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
DntgtHf.
  • f3h64xfdfo.pages.dev/475
  • f3h64xfdfo.pages.dev/331
  • f3h64xfdfo.pages.dev/59
  • f3h64xfdfo.pages.dev/15
  • f3h64xfdfo.pages.dev/464
  • f3h64xfdfo.pages.dev/140
  • f3h64xfdfo.pages.dev/373
  • f3h64xfdfo.pages.dev/423
  • jarak titik h ke garis df